Difference between revisions of "Boolean Algebra"

From TRCCompSci - AQA Computer Science
Jump to: navigation, search
(Example 10)
(Example 16)
Line 336: Line 336:
  
 
<Math>\overline{A}(A + B) + (B + AA)(A + \overline{B})</Math>
 
<Math>\overline{A}(A + B) + (B + AA)(A + \overline{B})</Math>
 +
 
Original expression
 
Original expression
  
 
<Math>\overline{A}A + \overline{A}B + (B + A)A + (B + A)\overline{B}</Math>
 
<Math>\overline{A}A + \overline{A}B + (B + A)A + (B + A)\overline{B}</Math>
 +
 
Idempotent (AA to A), then Distributive, used twice.
 
Idempotent (AA to A), then Distributive, used twice.
  
 
<Math>\overline{A}B + (B + A)A + (B + A)\overline{B}</Math>
 
<Math>\overline{A}B + (B + A)A + (B + A)\overline{B}</Math>
 +
 
Complement, then Identity. (Strictly speaking, we also used the Commutative Law for each of these applications.)
 
Complement, then Identity. (Strictly speaking, we also used the Commutative Law for each of these applications.)
  
 
<Math>\overline{A}B + BA + AA + B\overline{B} + A\overline{B}</Math>
 
<Math>\overline{A}B + BA + AA + B\overline{B} + A\overline{B}</Math>
 +
 
Distributive, two places.
 
Distributive, two places.
  
 
<Math>\overline{A}B + BA + A + A\overline{B}</Math>
 
<Math>\overline{A}B + BA + A + A\overline{B}</Math>
 +
 
Idempotent (for the A's), then Complement and Identity to remove BB.
 
Idempotent (for the A's), then Complement and Identity to remove BB.
  
 
<Math>\overline{A}B + AB + AT + A\overline{B}</Math>
 
<Math>\overline{A}B + AB + AT + A\overline{B}</Math>
 +
 
Commutative, Identity; setting up for the next step.
 
Commutative, Identity; setting up for the next step.
  
 
<Math>\overline{A}B + A(B + T + \overline{B})</Math>
 
<Math>\overline{A}B + A(B + T + \overline{B})</Math>
 +
 
Distributive.
 
Distributive.
  
 
<Math>\overline{A}B + A</Math>
 
<Math>\overline{A}B + A</Math>
 +
 
Identity, twice (depending how you count it).
 
Identity, twice (depending how you count it).
  
 
<Math>A + \overline{A}B</Math>
 
<Math>A + \overline{A}B</Math>
 +
 
Commutative.
 
Commutative.
  
 
<Math>(A + \overline{A})(A + B)</Math>
 
<Math>(A + \overline{A})(A + B)</Math>
 +
 
Distributive.
 
Distributive.
  
 
<Math>A + B</Math>
 
<Math>A + B</Math>
 +
 
Complement, Identity.
 
Complement, Identity.
  
 
==Example 16==
 
==Example 16==

Revision as of 13:46, 9 May 2018

Any equation must be within the <math> </math> tags. For Boolean alegbra the main issue is how to negate a term like:

[math] \overline{a}[/math] or [math] \overline{\overline{a}+b}[/math]

this can be done by adding the following around any term you wish to negate.:

<math> \overline{} </math>  

[math] \overline{a}[/math]

is

 <math> \overline{a} </math>

[math] \overline{\overline{a}+b}[/math]

is

 <math> \overline{\overline{a}+b} </math>.

Identities

AND Identities

[math] A.1 = A [/math]

This equation means that the output is determined by the value of A. So if A =0, The output is 0, and vice versa.

[math] 0.A = 0 [/math]

Because there is a 0 in this equation, the output of this will always be 0 regardless of the value of A.

[math] A.A = A[/math]

The output is determined by A alone in this equation. This can be simplified to just "A".

[math] A.\overline{A}=0 [/math]

Here the output will be 0, regardless of A's value. A would have to be 1 and 0 for the output to be 1. This means we can simplify this to just 0.

OR Identities

[math] 0+A = A [/math]

0 or A can be simplified as just A.

[math] 1+A = 1 [/math]

1 or A can be simplified as just 1.

[math] A+A=A[/math]

A or A can be simplified as just A.

[math] \overline{A}+A=1[/math]

NOT A or A can be simplified as just 1.

Laws

Commutative Law

The Commutative Law is where equations are the same no matter what way around the letters are written. For example

[math] A+B = B+A [/math]

or

[math] A.B = B.A [/math]

Associate Law

If all of the symbols are the same it doesn't matter which order the equation is evaluated.

[math] A+(B+C) = B + (A+C) [/math]

[math] A+(B+C) = B + (A+C) [/math]

[math] A+(B+C) = C + (A+B) [/math]

So:

[math] A.(B.C) = B . (A.C) [/math]

[math] A.(B.C) = B . (A.C) [/math]

[math] A.(B.C) = C . (A.B) [/math]

Distributive Law

The distributive law is these two equations.

[math] A.(B+C) = A.B + A.C [/math]

[math] A+(B.C) = (A+B).(A+C) [/math]

This is essentially factorising or expanding the brackets, but you can also:

[math] A.B + A.C = A.(B+C)[/math]

[math] A+B.A+C = A+(B.C) [/math]

Redundancy Law

Law 1 : [math] A + \overline{A} B = A + B [/math]

Proof :

[math]= A + \overline{A} B \\ = (A + \overline{A})(A + B) \\ = 1 . (A + B) \\ = A + B [/math]


Law 2: [math] A.(\overline{A} + B) = A.B[/math]

Proof :

[math]= A.(\overline{A} + B) \\ = A.\overline{A} + A.B \\ = 0 + A.B \\ = A.B [/math]

Identity Law

This is also in the identities section:

[math] A.A = A [/math]

[math] A+A = A [/math]

Negation Law

Just like in any other logic negating a negative is a positive so:

[math] \overline{ \overline{A} } = A [/math]

Equations

Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:

Example 1

[math] \overline{\overline{A}} . \overline{(B+C)} = A. \overline{B} . \overline{C} [/math]

[math] \overline{\overline{A}} = A [/math] Use Negation Law

[math] \overline{(B+C)} = (\overline{B} . \overline{C}) [/math] Use De Morgan's Law

[math] A . (\overline{B} . \overline{C}) = A . \overline{B} . \overline{C} [/math] Use Associate Law

Example 2

[math] (\overline{A} + A) . (\overline{A} + C) [/math]

OR Identity

[math](\overline{A} + A) = 1[/math]

AND Identity

[math]= 1.(\overline{A} + C)[/math]

Simplify

[math]= (\overline{A} + C)[/math]

Example 3

[math](X + Y) . (X + \overline{Y})[/math]
Distributive:
[math]X . (Y + \overline{Y})[/math]
Identity laws:
[math]Y + \overline{Y} = 1[/math]

[math] X.1 = X[/math]

Example 4

Expression Rule(s) Used C + BC Original Expression C + (B + C) DeMorgan's Law. (C + C) + B Commutative, Associative Laws. T + B Complement Law. T Identity Law.

Example 5

Simplify: AB(A + B)(B + B):
Expression Rule(s) Used
AB(A + B)(B + B) Original Expression
AB(A + B) Complement law, Identity law.
(A + B)(A + B) DeMorgan's Law
A + BB Distributive law. This step uses the fact that or distributes over and. It can look a bit strange since addition does not distribute over multiplication
A Complement, Identity

Example 6

[math] \overline{A.B}(\overline{A} + B)(\overline{B} + B) [/math] Original Expression

[math] \overline{AB}(\overline{A} + B) [/math] Complement law, Identity law.

[math] (\overline{A} + \overline{B})(\overline{A} + B) [/math] DeMorgan's Law

[math] \overline{A} + \overline{B}.B [/math] Distributive law. This step uses the fact that or distributes over and.

[math] \overline{A} [/math] Complement, Identity.

Example 7

SIMPLIFY [math](A + C)A + AC + C[/math]


[math](A + C)A + AC + C[/math] Complement, Identity.


[math]A((A + C) + C) + C[/math] Commutative, Distributive.


[math]A(A + C) + C[/math] Associative, Idempotent.


[math]AA + AC + C[/math] Distributive.


[math]A + (A + T)C[/math] Idempotent, Identity, Distributive.


[math]A + C[/math] Identity, twice.

Example 8

Simplify

[math] (X+Y).(X+\overline{Y}) [/math]

solution

[math] X.X + X.\overline{Y} + Y.X + Y.\overline{Y} [/math] Expanding the brackets

[math] X + X.\overline{Y} + Y.X + 0 [/math] Use of [math] X.X = X [/math] and [math] Y.\overline{Y} = 0 [/math]

[math] X + X(\overline{Y}+Y) [/math] Taking X out of the brackets

[math] X + X(1) [/math] Use of [math] Y + \overline{Y} = 1 [/math]

[math] X(1) [/math]

[math] X [/math]

Example 9

[math] (X + Y) . (X + \overline{Y}) [/math]

[math] X + (Y.\overline{Y}) [/math] after distributive law applied

[math] (Y.\overline{Y}) = 0 [/math]

[math] X + 0 [/math]

[math] X [/math]

[math] (X + Y) . (X + \overline{Y}) = X [/math]

Example 10

Simplify: [math] \overline {AB} (\overline {A}+B)(\overline {B}+B) [/math] [math] \overline {AB} (\overline {A}+B) [/math] Complement law, Identity law [math] (\overline {A}+\overline {B})(\overline {A}+B) [/math]

DeMorgan's law   

[math] \overline {A}+/overline {B}B [/math] Distributive law. [math] \overline {A} [/math]

Example 11

Example 12

Example 13

[math]\overline{\overline{A} + \overline{(B.A)}}[/math]

First simplify using De Morgam's Law

[math] \overline{\overline{A} + \overline{B} + \overline{A}} [/math]

This can be simplified to

[math] \overline{\overline{A} + \overline{B}} Then use De Morgans Law Again \lt math\gt \overline{\overline{A}} + \overline{\overline{B}} [/math]

Finaly there are double negatives so you end up with

[math] A + B [/math]

Example 14

Simplify: [math] X.(\overline{X}+Y) [/math]

[math] (X.\overline{X})+(X.Y) [/math] using the Distributive Law

[math] 0 + (X.Y) [/math] using the identity [math]A.\overline{A}=0[/math]

[math] X.Y [/math] using the identity [math]A+0=A[/math]

Fully simplified the equation

Example 15

Simplify the following: [math] \overline{ \overline{(A.A)}. \overline{(B.B)}} [/math]

Using De Morgan's law we can put the equation into another form:

1. Change All operations,

[math] \overline{ \overline{(A+A)}+ \overline{(B+B)}} [/math]

2. Negate letters:

[math] \overline{ (A+A)+(B+B) } [/math]

3. Negate the whole expression:

[math] (A+A)+(B+B) [/math]

Using the identity law, we can then simplify this expression to:

[math] A+B [/math]

Example 16

For this example the Boolean Algebra itself is shown above while the description/the rules used are listed below it:

[math]\overline{A}(A + B) + (B + AA)(A + \overline{B})[/math]

Original expression

[math]\overline{A}A + \overline{A}B + (B + A)A + (B + A)\overline{B}[/math]

Idempotent (AA to A), then Distributive, used twice.

[math]\overline{A}B + (B + A)A + (B + A)\overline{B}[/math]

Complement, then Identity. (Strictly speaking, we also used the Commutative Law for each of these applications.)

[math]\overline{A}B + BA + AA + B\overline{B} + A\overline{B}[/math]

Distributive, two places.

[math]\overline{A}B + BA + A + A\overline{B}[/math]

Idempotent (for the A's), then Complement and Identity to remove BB.

[math]\overline{A}B + AB + AT + A\overline{B}[/math]

Commutative, Identity; setting up for the next step.

[math]\overline{A}B + A(B + T + \overline{B})[/math]

Distributive.

[math]\overline{A}B + A[/math]

Identity, twice (depending how you count it).

[math]A + \overline{A}B[/math]

Commutative.

[math](A + \overline{A})(A + B)[/math]

Distributive.

[math]A + B[/math]

Complement, Identity.

Example 16