Project Handbook
Computer Science @ TRC
 © 2015

Introduction

The Non Exam Assessment is a practical computing exercise, the object of which is to produce a complete working solution to a problem. The project allows you to develop your practical skills in the context of solving a realistic problem or carrying out an investigation. 
The project is intended to be as much a learning experience as a method of assessment; you have the opportunity to work independently on a problem of interest over an extended period, during which you can extend your programming skills and deepen your understanding of computer science.
The most important skill that should be assessed through the project is your ability to create a programmed solution to a problem or investigation. This is recognised by allocating 42 of the 75 available marks to the technical solution and a lower proportion of marks for supporting documentation to reflect the expectation that reporting of the problem, its analysis, the design of a solution or plan of an investigation and testing and evaluation will be concise.

The project report
The project report should be presented in the following order:
	Section
	
	Max mark

	1
	Analysis
	9

	2
	Documented design
	12

	3
	Technical solution
	42

	4
	Testing
	8

	5
	Evaluation
	4

	Total
	
	75


This does not mean that the evidence must be produced in this order. Further detail on what should be included in each section is included later. The overall project is marked out of 75 with the following mark distribution above.
The project documentation should be clearly organised, including appropriate titles, page numbering and a contents page so that evidence can be easily found and referred to Items that are not directly required in the report, such as interview evidence and documents collected, should be included in appendices to the report.

Other points:
· The report should relate to the final version of the project
· Practice good project management, stick to stated deadlines
· Make regular backups of your project

Types of problem/investigation
You are encouraged to choose a problem to solve or investigate that will be of interest to you and that relates to a field that you have some knowledge of. There are no restrictions on the types of problem/ investigation that can be submitted or the development tools (for example programming language) that can be used. The two key questions to ask when selecting a problem/investigation are:

· Do you have existing knowledge of the field, or are you in a position to find out about it?
· Is a solution to the problem/investigation likely to give you the opportunity to demonstrate the necessary degree of technical skill to achieve a mark that reflects your potential and goals?
Some examples of the types of problem to solve or investigate are:

· a simulation for example, of a business or scientific nature, or an investigation of a well-known problem such as the game of life
· a solution to a data processing problem for an organisation, such as membership systems
· the solution of an optimisation problem, such as production of a rota, shortest-path problems or route finding
· a computer game
· an application of artificial intelligence
· a control system, operated using a device such as an Arduino board
· a website with dynamic content, driven by a database back-end
· an app for a mobile phone or tablet
· an investigation into an area of computing, such as rendering a three-dimensional world on screen • investigating an area of data science using, for example, Twitter feed data or online public data sets
· investigating machine learning algorithms.


There is an expectation that within a college, the problems chosen by students to solve or investigate will be sufficiently different to avoid the work of one student informing the work of another because they are working on the same problem or investigation. 
Technical Skills (Table 1)
	Group
	Model (including data model/structure)
	Algorithms

	A
	Complex data model in database (eg several interlinked tables)
 
 
Hash tables, lists, stacks, queues, graphs, trees or structures of equivalent standard
Files(s) organised for direct access
 
 
 
 
Complex scientific/mathematical/robotics/ control/business model
 
 
 
 
 
 
Complex user-defined use of objectorientated programming (OOP) model, eg classes, inheritance, composition, polymorphism, interfaces
Complex client-server model
	Cross-table parameterised SQL
Aggregate SQL functions
User/CASE-generated DDL script
Graph/Tree Traversal
List operations
Linked list maintenance
Stack/Queue Operations
Hashing
Advanced matrix operations
Recursive algorithms
Complex user-defined algorithms (eg optimisation, minimisation, scheduling, pattern matching) or equivalent difficulty Mergesort or similarly efficient sort
Dynamic generation of objects based on complex user-defined use of OOP model
Server-side scripting using request and response objects and server-side extensions for a complex client-server model
Calling parameterised Web service APIs and parsing JSON/XML to service a complex client-server model






	Group
	Model (including data model/structure)
	Algorithms

	B
	Simple data model in database (eg two or three interlinked tables)
Multi-dimensional arrays
Dictionaries
Records
 
Text files
File(s) organised for sequential access
Simple scientific/mathematical /robotics/ control/business model
 
 
 
Simple OOP model
Simple client-server model
	Single table or non-parameterised SQL
 
Bubble sort
Binary search
 
 
 
Writing and reading from files
 
 
Simple user defined algorithms (eg a range of mathematical/statistical calculations)
Generation of objects based on simple OOP model
Server-side scripting using request and response objects and server-side extensions for a simple client-server model
Calling Web service APIs and parsing JSON/
XML to service a simple client-server model

	C
	Single-dimensional arrays
Appropriate choice of simple data types
Single table database
	Linear search
Simple mathematical calculations (eg average)
Non-SQL table access



Note that the contents of Table 1 are examples, selected to illustrate the level of demand of the technical skills that would be expected to be demonstrated in each group. The use of alternative algorithms and data models is encouraged. To achieve top marks you should be looking to carry out a project in group A.

Although the table above only affects the marks for your technical solution remember that the more technical skills will also give you more scope in the analysis and design sections to achieve the best marks.


Coding Style (Table 2)
	Style
	Characteristic

	Excellent
	Modules (subroutines) with appropriate interfaces
Loosely coupled modules (subroutines) – module code interacts with other parts of the program through its interface only
Cohesive modules (subroutines) – module code does just one thing
Modules(collections of subroutines) – subroutines with common purpose grouped
Defensive programming
Good exception handling

	Good
	Well-designed user interface
Modularisation of code
Good use of local variables
Minimal use of global variables
Managed casting of types
Use of constants
Appropriate indentation
Self-documenting code
Consistent style throughout
File paths parameterised

	Basic
	Meaningful identifier names
Annotation used effectively where required



The quality of your code will also be important to the overall mark you achieve, marks within each band are allocated according the skills. You must use excellent coding style to achieve top marks. 

The descriptions in Table 2 are cumulative, ie for a program to be classified as excellent it would be expected to exhibit the characteristics listed as excellent, good and basic not just those listed as excellent.

Project Development Calendar 2017/2018

[image: bs00057_]


The dates stated below are approximate. Specific dates set for completion of each stage will be given later. 

It is vital that all deadlines during the development are met. These will be closely monitored. 


	Stage

	Start
	To be completed

	Initial idea / Background

	March 2017
	March 2016

	Analysis – investigation of current system
	March 2017
	April 2017

	Analysis – specifying the new system
	April 2017
	May 2017

	Design

	May 2017
	July 2017

	Implementation

	September 2017
	January 2018

	Testing

	January 2018
	February2018

	Appraisal

	March 2018
	March 2018



The exam board recommend to devote at least 50 hours of lesson time to the project overall, as a student you will be expected to also work on your project in your own time. We are focusing on the project in the final weeks of your first year (around 25 hours), you will then have one lesson a week next year dedicated to your project.

Some of the lessons in the first year will look at important skills such has modelling and databases. The rest of the time will be for you to investigate your project ideas and to complete your analysis.

The aim of this schedule is to ensure the project is completed on time. It will give you enough time to produce a good piece of coursework yet will ensure that it will be out of the way before the final exam period begins.


Personal Log Book

Write the date in the relevant box as you start and complete each section. You will be told the deadline for each section. There will be an opportunity to have a draft of each section marked and feedback given before the final version is submitted.


Analysis	Deadline May 2017

Date started March 2017	Date completed

You are expected to:
· produce a clear statement that describes the problem area and specific problem that is being solved/investigated
· outline how they researched the problem
· state for whom the problem is being solved/investigated
· provide background in sufficient detail for a third party to understand the problem being solved/ investigated
· produce a numbered list of measurable, "appropriate" specific objectives, covering all required functionality of the solution or areas of investigation (Appropriate means that the specific objectives are single purpose and at a level of detail that is without ambiguity)
· report any modelling of the problem that will inform the Design stage, for example a graph/network model of Facebook connections or an E-R model.
A fully scoped analysis is one that has:
· researched the problem thoroughly
· has clearly defined the problem being solved/investigated
· omitted nothing that is relevant to subsequent stages
· statements of objectives which clearly and unambiguously identify the scope of the project
· modelled the problem for the Design stage where this is possible and necessary.
Progress Checker

	Task
	Draft
	Final

	Background to/identification of problem 
	
	

	The prospective user(s)
	
	

	Investigation methods
	
	

	Interview questions and transcript of responses
	
	

	Relevant documents
	
	

	Description of current system 
	
	

	Problems with current system
	
	

	Additional user requirements/limitations
	
	

	Context diagram (Data Sources and Destinations)
	
	

	Data Flow Diagram(s) for existing system
	
	

	Analysis Data Dictionary (User Data Requirements)
	
	

	Data volumes
	
	

	Purpose of the new system
	
	

	Specific objectives of the proposed system
	
	

	Limitations of the proposed system 
	
	

	Constraints placed on new system
	
	

	Appraisal of the feasibility of potential solutions
	
	

	Proposed solution justified
	
	



If appropriate:
	E-R Models for database projects
	
	

	Identification of Objects and Object analysis diagrams for Object-oriented programmed solutions
	
	




Design	Deadline July 2017

Date started May 2017	Date completed

Students are expected to articulate their design in a manner appropriate to the task and with sufficient clarity for a third party to understand how the key aspects of the solution/investigation are structured and on what the design will rely, eg use of numerical and scientific package libraries, data visualisation package library, particular relational database and/or web design framework. 
The emphasis is on communicating the design; therefore it is acceptable to provide a description of the design in a combination of diagrams and prose as appropriate, as well as a description of algorithms, SQL, data structures, database relations as appropriate, and using relevant technical description languages, such as pseudo-code. Where design of a user interface is relevant, screen shots of actual screens are acceptable.
Progress Checker

	Task
	Draft
	Final

	Outline system design:
	
	

	Overall description of system
	
	

	Structure diagram/ Module descriptions
	
	

	IPSO chart
	
	

	User interface design (HCI):
	
	

	HCI rationale
	
	

	Sample of planned data capture and entry designs
	
	

	Sample of planned valid output
	
	

	Data requirements for programmed solution:
	
	

	Description of Record Structure
	
	

	Validation Required
	
	

	File organisation and processing method 
	
	

	Data requirements for database solution:
	
	

	Normalised tables and revised E-R diagram
	
	

	Identification of appropriate storage media
	
	

	Processing:
	
	

	Processing required/ System flowcharts
	
	

	Algorithms required for data transformation
	
	

	or for object oriented solution:
	
	

	Class/object diagrams/definitions
	
	

	Object behaviours and methods
	
	

	Other aspects:
	
	

	System security / Security and integrity of data
	
	

	Overall test strategy
	
	





Implementation	Deadline January 2018

Date started September 2017	Date completed

Students should provide program listing(s) that demostrate their technical skill. The program listing(s) should be appropriately annotated and self-documenting (an approach that uses meaningful identifiers, with well structured code that minimises instances where program comments are necessary).
Students should present their work in a way that will enable a third party to discern the quality and purpose of the coding. This could take the form of:
· an overview guide which amongst other things includes the names of entities such as executables, data filenames/urls, database names, pathnames so that a third party can, if they so desire, run the solution/investigation
· explanations of particularly difficult-to-understand code sections; a careful division of the presentation of the code listing into appropriately labelled sections to make navigation as easy as possible for a third party reading the code listing.
Progress Checker
	Task
	Date/Time
	Done

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


	


Testing	Deadline February 2018

Date started January 2018	Date completed

Students must provide and present in a structured way for example in tabular form, clear evidence of testing. This should take the form of carefully selected and representative samples, which demonstrate the robustness of the complete, or nearly complete, solution/thoroughness of investigation and which demonstrate that the requirements of the solution/investigation have been achieved. The emphasis should be on producing a representative sample in a balanced way and not on recording every possible test and test outcome. Students should explain the tests carried out alongside the evidence for them. This could take the form of:

· an introduction and overview
· the test performed
· its purpose if not self-evident
· the test data
· the expected test outcome
· the actual outcome with a sample of the evidence, for example screen shots of before and after the test, etc, sampled in order to limit volume.
Progress Checker

	Task
	Draft
	Final

	Module test plan with individual tests using a minimal set of test data including:
	
	

	expected results for clearly defined typical data
	
	

	expected results for clearly defined erroneous data
	
	

	expected results for clearly defined boundary data
	
	

	samples of annotated hard copy of actual test runs
	
	

	System test plan with tests showing the system working:
	
	

	Plan showing typical sequence of actions 
	
	

	annotated hard copy showing the system working 
	
	







Appraisal	Deadline March 2018

[bookmark: _GoBack]Date started March 2018	Date completed

Students should consider and assess how well the outcome meets its requirements. Students should obtain independent feedback on how well the outcome meets its requirements and discuss this feedback. Some of this feedback could be generated during prototyping. If so, this feedback, and how/ why it was taken account must be presented and referenced so it can be found easily.
Students should also consider and discuss how the outcome could be improved more realistically if the problem/investigation were to be revisited.
Progress Checker

	Task
	Draft
	Final

	Comparison of performance against objectives
	
	

	Clear evidence of user feedback
	
	

	Analysis of user feedback
	
	

	Suggested improvements based on user feedback
	
	









image1.wmf

image10.wmf

